58 research outputs found

    Intelligent Based Terrain Preview Controller for a 3-axle Vehicle

    Get PDF
    Presented at 13th International Symposium on Advanced Vehicle Control, AVEC'16; Munich 13-16/09/2016The paper presents a six-wheel half longitudinal model and the design of a dual level control architecture. The first (top) level is designed using a Sugeno fuzzy inference feedforward architecture with and without preview. The second level of controllers are locally managing each wheel for each axle. As the vehicle is moving forward the front wheels and suspension units will have less time to respond when compared to the middle and rear units, hence a preview sensor is used to compensate. The paper shows that the local active suspensions together with the Sugeno Fuzzy, (locally optimised using subtractive clustering), Feedforward control strategy is more effective and this architecture has resulted in reducing the sprung mass vertical acceleration and pitch accelerations

    Kinetic energy storage using a dual braking system for unmanned parallel hybrid electric vehicle

    Get PDF
    In this paper a novel regenerative dual braking strategy is proposed for utility/goods delivery unmanned vehicles in public roads, which improves the regenerative energy capturing ability and consequently improves the fuel use of parallel hybrid power train configurations for land unmanned vehicles where the priority is not comfort but extending the range. Furthermore, the analysis takes into account the power handling ability of the electric motor and the power converters. In previous research a plethora of regenerative braking strategies is shown, for this paper the key contribution is that the vehicle electric regeneration is related to a fixed braking distance in relation to the energy storage capabilities specifically for unmanned utility type land vehicles where passenger comfort is not a concern but pedestrian safety is of critical importance. Furthermore, the vehicle’s power converter capabilities facilitate the process of extending the braking time via introducing a variable deceleration profile. The proposed approach has therefore resulted in a regenerative algorithm which improves the vehicle’s energy storage capability without considering comfort since this analysis is applicable to unmanned vehicles. The algorithm considers the distance as the key parameter, which is associated to safety, therefore it allows the braking time period to be extended thus favouring the electric motor generation process while sustaining safety. This method allows the vehicle to brake for longer periods rather than short bursts hence resulting in a more effective regeneration with reduced use of the dual (i.e. caliper/stepper motor brake system). The regeneration method and analysis is addressed in the following paper sections. The simulation results show that the proposed regenerative braking strategy has improved significantly the energy recapturing ability of the hybrid power train configuration. The paper is also supported with experimental data that verify the theoretical development and the simulation results. The two strategies developed and implemented are Constant Braking Torque (CBT) and Constant Braking Power (CBP). Both methods were limited to a fixed safety-based distance. Overall the results demonstrate that the CBT method results in better energy-based savings

    Multi-mode electric actuator dynamic modelling for missile fin control

    Get PDF
    Linear first/second order fin direct current (DC) actuator model approximations for missile applications are currently limited to angular position and angular velocity state variables. Furthermore, existing literature with detailed DC motor models is decoupled from the application of interest: tail controller missile lateral acceleration (LATAX) performance. This paper aims to integrate a generic DC fin actuator model with dual-mode feedforward and feedback control for tail-controlled missiles in conjunction with the autopilot system design. Moreover, the characteristics of the actuator torque information in relation to the aerodynamic fin loading for given missile trim velocities are also provided. The novelty of this paper is the integration of the missile LATAX autopilot states and actuator states including the motor torque, position and angular velocity. The advantage of such an approach is the parametric analysis and suitability of the fin actuator in relation to the missile lateral acceleration dynamic behaviou

    A review of dual-spin projectile stability

    Get PDF
    This paper gives a succinct review of dual-spinprojectile stability and some technologies relating to them. It describes how the traditional stability factors from linear projectile theory are modified to better describe a controlled dual-spin projectile. Finally, it reviews works which have investigated how different aspects of a controlled dual-spin design can affect flight stability, primarily airframe structure and canard properties. A conclusion is given, highlighting important guidelines from the enclosed discussion

    Quasi-real-time confined environment path generation for mobile robotic manipulator arms

    Get PDF
    Path generation for mobile robotic manipulator arms is challenging in dynamic environments because high-speed calculations are required to deal with fast-moving obstacles. A novel path-planning algorithm has been developed which solves in quasi-real time the problem of path generation in confined environments for interconnected multi-body systems, specifically a robotic manipulator arm with three links. The work presented in this article builds upon the previous work by reformulating the technique to increase the speed at which the algorithm is able to calculate a safe path. The complexity of the task space has increased substantially compared to previous work, and the algorithm has been reformulated to speed up the calculation in order to maintain or even improve its ability to plan a safe path in real time. The method is now able to calculate a safe path through environments significantly more quickly than the previous method, and the results presented in this article expand the complexity of the environment by a large amount and test the ability of the reformulated algorithm to still operate in real time, which the method achieves. It was found that the reformulated method reduces the calculation time for path generation exponentially when used to plan safe paths through test environments involving different numbers of obstacles. The new algorithm thus has the potential to facilitate path planning in challenging dynamic environments, such as those used in sensitive manufacturing and maintenance tasks as well as bomb disposal and similar applications

    H∞/LQR optimal control for a supersonic air-breathing missile of asymmetric configuration

    Get PDF
    Robust control is challenging to achieve for air-breathing missiles operating in a high Mach number regime, such as at high supersonic speeds (M > 3). The challenge arises because of strong couplings, significant non-linearities and large uncertainties in the aerodynamics and propulsion system. The feasibility of achieving robust control in such applications is strongly linked to the development of an appropriate control design structure. The purpose of this paper is to illustrate that in order to stabilise a highly unstable airframe and achieve the required performance, a hybrid of two control schemes may be used to achieve best results. A state feedback linear quadratic regulator is used to stabilise the plant and a forward path H∞ optimal controller is used to achieve the required performance and robustness. We also highlight the complementary attributes of the two control schemes that together can generate a more robust controller; LQR is used since it can achieve good gain and phase margins, whereas, the H∞ control method is better equipped to deal with uncertainties

    Hypersurface normalised gain-scheduled controller for a non-linear 6-DOF fast jet

    Get PDF
    This paper describes a novel approach for improving the dynamic response of a bank-to-turn autopilot for a non-linear six degree-of-freedom (6-DoF) aircraft model. The autopilot consists of a series of gain-scheduled (GS) proportional, integral and derivative (PID) controllers that govern the aircraft's angular velocities for roll, pitch and yaw. The controller gains have been optimised for localised trim points and applied continuously to the controllers using linear interpolation to form a hypersurface. Our novel solution has been achieved by implementing a set of scheduled gains for near-zero reference signals and integrating this with a set of gains that are normalised to the reference signal. The proposed approach has been compared to conventional gain scheduling techniques using a series of step input simulated manoeuvres, applied individually to the roll and pitch controllers. The results show improved rise and fall times, steady state errors, as well as reduced controller effor

    Subtractive clustering Takagi-Sugeno position tracking for humans by low-cost inertial sensors and velocity classification

    Get PDF
    In this work, open-loop position tracking using low-cost inertial measurement units is aided by Takagi-Sugeno velocity classification using the subtractive clustering algorithm to help generate the fuzzy rule base. Using the grid search approach, a suitable window of classified velocity vectors was obtained and then integrated to generate trajectory segments. Using publicly available experimental data, the reconstruction accuracy of the method is compared against four competitive pedestrian tracking algorithms. The comparison on selected test data, has demonstrated more competitive relative and absolute trajectory error metrics. The proposed method in this paper is also verified on an independent experimental data set. Unlike the methods which use deep learning, the proposed method has shown to be transparent (fuzzy rule base). Lastly, a sensitivity analysis of the velocity classification models to perturbations from the training orientation at test time is investigated, to guide developers of such data-driven algorithms on the granularity required in an ensemble modelling approach. The accuracy and transparency of the approach may positively influence applications requiring low-cost inertial position tracking such as augmented reality headsets for emergency responders.Engineering and Physical Sciences Research Council (EPSRC): EP/S513623/1 BAE System
    • …
    corecore